Master Theorem: Practice Problems and Solutions
Practice Problems For each of the following recurrences, give an expression for the runtime T (n) if the recurrence can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does not apply.
1. T (n) = 3T (n/2) + n^2
2. T (n) = 4T (n/2) + n^2
3. T (n) = T (n/2) + 2n
4. T (n) = 2nT (n/2) + n^n
5. T (n) = 16T (n/4) + n
6. T (n) = 2T (n/2) + n log n
7. T (n) = 2T (n/2) + n/ log n
8. T (n) = 2T (n/4) + n ^0.51
9. T (n) = 0.5T (n/2) + 1/n
10. T (n) = 16T (n/4) + n!
11. T (n) = √ 2T (n/2) + log n
12. T (n) = 3T (n/2) + n
13. T (n) = 3T (n/3) + √ n
14. T (n) = 4T (n/2) + cn
15. T (n) = 3T (n/4) + n log n
16. T (n) = 3T (n/3) + n/2
17. T (n) = 6T (n/3) + n^2 log n
18. T (n) = 4T (n/2) + n/ log n
19. T (n) = 64T (n/8) − n^2 log n
20. T (n) = 7T (n/3) + n^2
21. T (n) = 4T (n/2) + log n
22. T (n) = T (n/2) + n(2 − cos n)
Solutions
1. T (n) = 3T (n/2) + n 2 =⇒ T (n) = Θ(n^2 ) (Case 3)2. T (n) = 4T (n/2) + n 2 =⇒ T (n) = Θ(n^2 log n) (Case 2)
3. T (n) = T (n/2) + 2n =⇒ Θ(2n ) (Case 3)
4. T (n) = 2nT (n/2) + n n =⇒ Does not apply (a is not constant)
5. T (n) = 16T (n/4) + n =⇒ T (n) = Θ(n^2 ) (Case 1)
6. T (n) = 2T (n/2) + n log n =⇒ T (n) = n log2 n (Case 2)
7. T (n) = 2T (n/2) + n/ log n =⇒ Does not apply (non-polynomial difference between f(n) and n logb a )
8. T (n) = 2T (n/4) + n 0.51 =⇒ T (n) = Θ(n^0.51) (Case 3)
9. T (n) = 0.5T (n/2) + 1/n =⇒ Does not apply (a < 1)
10. T (n) = 16T (n/4) + n! =⇒ T (n) = Θ(n!) (Case 3)
11. T (n) = √ 2T (n/2) + log n =⇒ T (n) = Θ(√ n) (Case 1)
12. T (n) = 3T (n/2) + n =⇒ T (n) = Θ(n^lg 3 ) (Case 1)
13. T (n) = 3T (n/3) + √ n =⇒ T (n) = Θ(n) (Case 1)
14. T (n) = 4T (n/2) + cn =⇒ T (n) = Θ(n^2 ) (Case 1)
15. T (n) = 3T (n/4) + n log n =⇒ T (n) = Θ(n log n) (Case 3)
16. T (n) = 3T (n/3) + n/2 =⇒ T (n) = Θ(n log n) (Case 2)
17. T (n) = 6T (n/3) + n 2 log n =⇒ T (n) = Θ(n^2 log n) (Case 3)
18. T (n) = 4T (n/2) + n/ log n =⇒ T (n) = Θ(n^2 ) (Case 1)
19. T (n) = 64T (n/8) − n 2 log n =⇒ Does not apply (f(n) is not positive)
20. T (n) = 7T (n/3) + n 2 =⇒ T (n) = Θ(n^2 ) (Case 3)
21. T (n) = 4T (n/2) + log n =⇒ T (n) = Θ(n^2 ) (Case 1)
22. T (n) = T (n/2) + n(2 − cos n) =⇒ Does not apply. We are in Case 3, but the regularity condition is violated. (Consider n = 2πk, where k is odd and arbitrarily large. For any such choice of n, you can show that c ≥ 3/2, thereby violating the regularity condition.)